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AN APPROXIMATE SOLUTION FOR LUMINOSITY DISTANCE I N  

ZERO-PRESSURE RELATIVISTIC MODEL UNIVERSES 

THAT HAVE THE U-PROPERTY 

By Windsor L. Sherman 
Langley Research Center 

SUMMARY 

Finite-density zero-pressure models of t he  universe based on general rela- 
t i v i t y  a re  studied. 
formity) and a metric subspace described by the  Robertson-Walker metric. Highly 
accurate approximate closed-form expressions f o r  t h e  r a d i a l  metric var iable ,  t he  
luminosity distance,  t he  time of l i g h t  t r ave l ,  and the sca le  f ac to r  of t he  uni- 
verse a re  obtained. The r e su l t s  are used t o  obtain new forms of  the  redshif t -  
magnitude and count-magnitude re la t ions  t h a t  are useful  f o r  t he  analysis of 
observational data  once the  signs of the  cosmical constant and curvature con- 
s t an t  a re  known. 
determination of t he  density parameter from apparent magnitude and redshi f t  data .  

These models have the  U-property (time-dependent uni- 

The redshift-magnitude r e l a t ion  i s  of a form t h a t  permits the  

INTRODUCTION 

I n  order t o  f ind  t h e  model universe t h a t  bes t  represents the  observed uni- 
verse, it i s  necessary t o  determine cer ta in  parameters from observational data.  
These parameters include the  acceleration and densi ty  parameters. A t  present 
t he  most s a t i s f ac to ry  expression t o  use f o r  t he  determination of these param- 
eters i s  the  redshift-magnitude re la t ion .  Several forms of the  redshif t -  
magnitude r e l a t ion  have been derived and are presented i n  references 1 t o  3 .  
Two of these redshift-magnitude r e l a t ions  are based, e i t h e r  e x p l i c i t l y  as i n  
reference 1 or  impl ic i t ly  a s  i n  reference 2, on the  assumption t h a t  a term 
cal led the  cosmical constant i s  zero. Reference 3 presents a redshift-magnitude 
r e l a t ion  based on a model universe t h a t  has a nonzero cosmical constant. How- 
ever, because of t h e  assumption of zero mater ia l  density used i n  deriving the 
model universes, some of the  zero-density models presented i n  reference 3 are 
not su i tab le  for t h e  analysis  of observational data.  The unsuitable models 
occur, f o r  t h e  most pa r t ,  when the  accelerat ion parameter i s  l e s s  than or equal 
t o  zero. Because models with an accelerat ion parameter t h a t  i s  less than zero 
may be important i n  the analysis  of observational data  when evolutionary e f f e c t s  
a re  considered, f in i te -dens i ty  zero-pressure model universes t h a t  possess t i m e -  
dependent uniformity (U-property) are s tudied t o  determine whether t he  catalog 
of redshift-magnitude re la t ions  f o r  model universes with a nonzero cosmical 
constant could be improved. 
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The study resul ted i n  a very good approximate expression f o r  luminosity 
distance,  and hence, f o r  t h e  redshift-magnitude re la t ion ,  f o r  model universes 
with a nonzero cosmical constant and f i n i t e  density. The only model universes 
not included are those with a zero cosmical constant. For t he  model universe 
with a zero cosmical constant an exact solut ion ex i s t s .  (See r e f .  1.) 

ANALYSIS 

Distance i n  the  observed universe i s  given by 

where m i s  the  apparent magnitude of the  source, K i s  the correction f o r  
redshi f t  t o  apparent magnitude, i s  the  absolute magnitude of the  equivalent 
l oca l  source, aM, i s  the  evolutionary correction t o  the  apparent absolute mag- 
nitude, and Dz i s  the  luminosity distance.  (See appendix for a complete sym- 
bol  l i s t . )  The luminosity distance i s  obtained from t h e  model universe, which, 
i n  the  present study, i s  based on general r e l a t i v i t y .  I n  r e l a t i v i s t i c  model 
universes ( r e f .  2) , D2 i s  given by 

Mo 

D2 = R o ( 1  + G]S(cu) ( 2 )  

where Ro i s  the  present value of the  scale fac tor ,  6 i s  the  redshi f t ,  cu i s  
a function of the  r ad ia l  metric variable ( r e f .  4), and S(cu) i s  a function of 
cu t h a t  depends on the  curvature of space. If the model a l so  possesses zero 
pressure, time-dependent uniformity, and a metric subspace defined by the  
Robertson-Walker metric, S(w) i s  given by 

S(cu) = = 1 sinh J-kcu ( 3 )  

where k i s  the curvature constant. I n  t h i s  case the  var iable  LU i s  given by 

where c i s  the  speed of l i g h t  i n  a vacuum, o0 i s  the  densi ty  parameter, Ho 

i s  the Rubble parameter, and A i s  the  cosmical constant. The constants 

and A are given by 

& 
R02 
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A = 3HO2(a0 - 9.) 
where qo is the  accelerat ion parameter. Equations ( 5 )  and ( 6 )  are  used t o  

eliminate - kc2 and A from the  integrand of equation (4), and the following 

equation r e s u l t s  : 
R02 

This i n t eg ra l  i s  e l l i p t i c  and cannot be integrated i n  terms of simple func- 
t ions .  Mattig ( r e f .  1) simplif ied t h i s  i n t eg ra l  by assuming t h a t  A = 0 and 
thus obtained simple closed-form solut ions.  In  reference 3 the  in t eg ra l  w a s  
simplified by assuming t h a t  t h e  density parameter 
under ce r t a in  conditions the  resu l t ing  zero-density models could be applied t o  
t he  observable universe. The assumption t h a t  A = 0 deletes  t he  constant 
term i n  equation (7), whereas t h e  zero-density assumption a f f ec t s  terms of a l l  
orders, including the  constant term. As shown i n  reference 3 ,  there  a re  cer- 
t a i n  zero-density models, primarily those w i t h  
used f o r  t he  analysis of observational data .  Because of t h i s  d i f f i cu l ty ,  equa- 
t i o n  (7 )  w a s  studied t o  determine whether simple closed-form solutions t h a t  were 
good approximations of equation (7)  could be obtained without s e t t i ng  the  den- 
s i t y  equal t o  zero. 

uo w a s  zero and showed t h a t  

0 5 s, 5 -1, tha t  cannot be 

There a re  several  approaches for obtaining approximate solutions i n  terms 
of simple functions.  One of t he  approaches i s  t o  expand the  integrand i n  a 
MacLaurin Series  about 6 = 0, and another i s  t o  determine whether higher order 
terms involving density, such as The second approach 
i s  used i n  the  present analysis .  

2 0 ~ 6 3 ,  can be neglected. 

I f  t he  term 200(1 + 6 ) 3  i n  equation (7 )  could be neglected, S(w), and 
consequently the  luminosity distance,  would be algebraic expressions. An anal- 
y s i s  of the r e l a t ive  significance of the terms under t h e  rad ica l  i n  equation (7), 
however, showed t h a t  t he  term 
w a s  abandoned. 

200(1 + 6)3 w a s  s ign i f icant ,  and t h i s  approach 

The denominator of equation (7)  w a s  expanded s o  t h a t  6 became the  varia- 
b le .  The expansion gave 

An analysis of the r e l a t ive  significance of the  terms i n  the  denominator of 
equation (7a) showed t h a t  f o r  t he  presently accepted ranges of uo and s, 
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(0.016 <= o0 <= 0.16 and 0.3 <= s, 5 e.?), the  term 2 0 ~ 6 3  made a negl igible  
contribution t o  the  denominator when 6 < 1. 

The general solut ion of equation (7a) with 2 0 ~ 6 3  = 0 i s  

i1 + 90 - 300 - where the  coeff ic ient  of t he  in t eg ra l  has been wri t ten as 

through the  use of  equation ( 5 ) .  In  figure 
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given 
by equations (7a) and (8) f o r  the  
model universe f o r  which A < 0 
and k = -1. For both models shown 
bo = 0.08j f o r  one model qo = 0.5 ,  
whereas f o r  the other,  go = 2.5. 
As shown i n  f igure 1, differences 
between the  exact and approximate 
forms cannot be detected f o r  
q, = 2.5, and they are barely 
detectable f o r  q, = 0.5 at  the  
higher values of 6. This f a c t  i s  
in te res t ing  because the  term 2 0 ~ 6 3  
w a s  neglected on the  bas i s  t h a t  
6 < 1. The r e su l t s  shown i n  f ig -  
ure 1 indicate  tha t ,  f o r  present 
conditions, the  t e r m  2 0 ~ 6 3  i s  
negl igible  out t o  6 = 1, and the 
r e su l t s  of calculations (not shown) 
indicate  t h a t  t h i s  condition 
extends appreciably beyond 6 = 1. 
This occurrence grea t ly  extends the  
usefulness of the  solut ion f o r  w. 

1 is  a comparison of wHoR0 - 
C 

The function S(w) i s  
obtained by subs t i tu t ing  equa- 
t i on  (8) in to  equation ( 3 )  and i s  

Figure 1.- Comparison of integration of equation 7(a) with integration 
of equation (8) for uo = 0.08. 
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Because, as shown i n  f igure 1, the  results f o r  w i n  t he  exact and approximate 
solut ions are very nearly equal, there  should be l i t t l e  difference i n  S(w) 
t he  exact and approximate expressions because the  hyperbolic s ine i s  operating 
on arguments t h a t  a re  almost equal f o r  t he  exact and approximate solutions.  

fo r  

The luminosity distance is  obtained by subs t i tu t ing  equation ( 9 )  i n to  equa- 
t i o n  (2 )  and i s  as follows: 

D2 
c ( 1  + 6 )  

cosh'l [ 

In  figure 2 is  compared the  approximate solut ion f o r  Dz which is  given by equa- 
t i o n  (10) with the  exact solut ion f o r  Dz 
of o given by equation (7a) i n  equations (2 )  and ( 3 ) .  A s  can be seen, t he  

which is  obtained by using the  value 

&OR0 agreement is  as good as t h a t  found f o r  7. 
T h i s  approximation i s  good out t o  6 = 1, as 
shown by f igures  1 and 2, i n  s p i t e  of t he  f a c t  
t h a t  it w a s  obtained under the  r e s t r i c t i o n  
t h a t  6 < 1. Unfortunately, t h i s  approximate 
solut ion holds only when A f 0; however, 
Mattig 's  work (ref.  1) provides an exact solu- 
t i o n  f o r  A = 0. 

Even though the  solut ion f o r  DZ given 
by equation (10) is  a very good approximation 
t o  the  exact solut ion f o r  Dz, differences are 
introduced as 6 increases above 1. L e t  E 
be the  difference between the  exact and 
approximate forms of equation (9); then 

E, is  given by 

D2,€, 
S t he  difference i n  D2 due t o  the  difference 

Figure 2.- Comparison of exact and approximate luminosity 

+ E cosh w (11) 

5 

distances. a. = 0.08; H, = 100 km/sec/Mulpc. 
DZ,€ = 

H o b  + 0 - 3ao 



I I 1111I II I I 

where cu i s  given by equation (8).  The difference E could be read from a 
p lo t  s i m i l a r  t o  f igure  2 extended t o  higher values of 6; thus at the  higher 
values of 6 the  deleted cubic term might have introduced a difference t h a t  
does not show i n  f igure  2. In  reference 3 the  difference between the values Of 

uHoRo f o r  the  f i n i t e -  and zero-density models w a s  0.005 a t  6 = 1. This d i f -  

ference, which corresponded t o  a difference i n  of 108 parsecs, w a s  con- 
sidered acceptable. For equation (11) D Z , ~  w a s  assumed t o  be 108 parsecs, 
and E w a s  assumed t o  be 0.005. For these values and f o r  bo = 0.08, equa- 
t i o n  (11) indicated tha t  t he  e r rors  would occur a t  6 = 2.25 and 6 = 4.95 
f o r  qo = 0.5 and q, = 2.5, respectively.  I n  these calculations KO w a s  
taken as 100/km/sec/Mpc. 

C 

D2 

Equation (10) represents a good closed-form approximate solution f o r  t he  
luminosity distance i n  a zero-pressure f in i te -dens i ty  model universe tha t  pos- 
sesses the  U-property and has a nonzero cosmical constant. Unfortunately, there  
a re  many model universes covered by t h i s  equation. Each of these 
universes involves a s l i g h t l y  d i f fe ren t  form of equation (10).  
s ingu la r i t i e s  a r i s e  which must be handled as indeterminate forms. If the  signs 
of k and A a re  known, equation (10) i s  useful  i n  es tabl ishing the  model uni- 
verse, because only one spec i f ic  form of equation (10) i s  necessary. 

(See r e f .  3 . )  
I n  addition, 

In  addition t o  the  luminosity distance, the  time of l i g h t  t r a v e l  and the  
sca le  fac tor  R a re  of i n t e r e s t .  The f a c t  t h a t  the  term 2a063 can be neg- 
lec ted  makes it possible t o  derive accurate closed-form expressions f o r  the  
var iables  to - t and R .  

The in t eg ra l  f o r  to - t -  from reference 3 i s  

where to i s  the  present time and t i s  some other time i n  the  past .  When the  
term 2 0 ~ 6 3  i s  neglected, the  expression integrates  t o  

which i s  the general solution f o r  
cosmical constant. 

to - t i n  the  model universe with a nonzero 

Figure 3 compares the  numerical solut ion of the  in t eg ra l  (eq.  (12) )  with 
the  approximate solut ion given by equation (12a) f o r  k = -1 and A < 0. In  
t h i s  f igure  i s  p lo t ted  as a function of 6, and, as can be seen, 
the agreement between equations (12) and (l2a) i s  excel lent .  

(to - t)% 
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to-t  
H,1 

8 

Figure 3.- Comparison of solutions for to - t/HC1 given by ell iptic 
integral equation (11) and the approximate solution, equation (12). 

The inversion of equation (12a) gives a solution for R, which is 

RELATIONSHIPS CONNECTING OBSERVATION AND THEORY 

The two most useful relationships connecting observation and theory are the 
redshift-magnitude relation and the count-magnitude relation. Of the two, the 
redshift-magnitude relation is more useful with present data and provides the 
stronger connection between observation and theory. 

The redshift-magnitude relation is obtained by substituting equation (10) 
into equation (1): 

7 



Mo being the  change i n  To the  f i rs t  approximation &lo is  given by - - 6, 

absolute magnitude per  epoch due t o  evolutionary e f fec ts .  (See r e f .  2 . )  This 
form of the  redshift-magnitude re la t ion  contains three  undete-ed constants, 
go, 
least-squares computing process t o  f ind  the  best  values of these parameters. 

G O  

HO 

bo, and Ho, and can, i n  theory, be used with observational data i n  a 

Figure 4 shows the  e f f ec t  of varying go when H, = 100 km/sec/Mpc, 
uo = 0.08, and 
between the  curves f o r  qo = 0.5 and q, = 1.0 t o  0 . 0 7 8 ~  between the  curves 
f o r  qo = 2.5 and go = 3.0 at  6 = 1. This separation i s  s l i g h t l y  smaller 
than the separation f o r  t he  zero-density model universe ( r e f .  3 ) ,  and indicates  
t ha t  e i the r  observation must be extended beyond 6 = 1 or the  precision must 
be improved before a model of the  universe can be defined. The separations are  
s t i l l  less than the best  root mean square of t he  residuals  found i n  reference 3 .  
The calculations i n  reference 3 are  considered t o  be applicable t o  t h i s  case 

Mo = 20.36. The separation of these curves var ies  from 0.127m 

because there  i s  l i t t l e  or no e f f ec t  of 
redshi f t  values of 0.46. 

13 
3.6 

12 

bo on the  separation curve out t o  

14 15 16 17 18 
m- K 

19 20 21 22 
1 

23 

Figure 4.- Effect of varying qo on redshift-magnitude relation (eq. (14)). H, = 100 km/sec/Mpc; oo = 0.08; M, = 20.56; AM = 0, 
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Figure 5 shows the  e f f ec t  of bo on the  redshift-magnitude re la t ion  when 
go = 1.5. The curves for uo = 0.016 and uo = 0.16 approximately correspond 
t o  the  limits of Oort's density range (see ref. 5 )  and the  separation i s  about 
0 . 0 7 ~  at  6 = 1. Increas'ing uo t o  0.80 gave a separation of 0.286m at  
6 = 1. 
ef fec t  on the  redshift-magnitude re la t ion .  This conclusion confirms the  r e su l t s  
of reference 3 which indicate  t h a t  up t o  
density redshift-magnitude re la t ions  are the  same. The curve for cro = 0.16 is  
separated very l i t t l e  from the  curves f o r  uo = 0.04 and uo = 0.016 i n  f ig -  
ure 5 .  T h i s  separation i s  not evident i n  reference 3 because of the  scale  used 
i n  p lo t t i ng  the  f igure,  and for prac t i ca l  purposes it i s  negligible.  It thus 
appears t h a t  t he  value of 
becomes appreciable. 

These results indicate  t h a t ,  up t o  uo = 0.016, density has l i t t l e  

o0 = 0.16, t he  f i n i t e -  and zero- 

uo must exceed 0.16 before the  e f f ec t  of density 

/ 
13 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

14 15 16 17 

/ 
/ 

18 
m -  K 

/ 
B 

19 20 21 22 23 

Figure 5.- Effect of varying u0 on redshift-magnitude relation (eq. (14)). Ho = 100 km/sec/Mpc; qo = 1.5; Mo = -20.56; AM = 0. 
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Another re la t ionship  t h a t  i s  useful  i n  the  analysis of observational data  
and t h a t  comes f r o m  the  model universe is  the  count-magnitude relat5on. I n  the  
past ,  the  count-magnitude r e l a t ion  has not been very sa t i s f ac to ry  f o r  t he  analy- 
sis  of observational data  because the  distance surveyed by the  200-inch t e l e -  
scope is not large enough t o  give an adequate data  sample. 
ever, with the  advent of the space telescope, t h i s  s i tua t ion  may change. 

(See r e f .  6. ) How- 

The count-magnitude r e l a t ion  ( r e f .  3) i s  

N ( m )  = 2nfio3 (sinh J-ku cosh J-ku, - fiu) 
(-k)Qo 

where w i s  given by equation (8 ) .  In  equation (15), N ( m )  i s  the number of 
galaxies br ighter  than a given apparent magnitude m, n i s  the number of gal-  
axies per uni t  volume, and Qo i s  the  number of  square degrees i n  the celes- 
t i a l  sphere. 

This count-magnitude re la t ion  f o r  the  f in i te -dens i ty  model, unlike the one 
f o r  the  zero-density model ( r e f .  3), i s  very close t o  the  exact count-magnitude 
re la t ion  because of the  agreement of the exact and approximate values of w 
and Ro. 

CONCLUDING REMARKS 

Re la t iv i s t i c  f in i te -dens i ty  zero-pressure models of the  universe t h a t  
possess the  U-property and have a metric subspace t h a t  i s  described by the  
Robertson-Walker metric have been studied. Approximate expressions f o r  the  
r a d i a l  metric variable and the  luminosity distance have been derived. Up t o  
redshi f t s  of 1, the  approximate solutions do not d i f f e r  from the  exact solu- 
t i o n  obtained through the  use of a high-speed d i g i t a l  computer. An expression 
f o r  the difference i n  the  luminosity distances t h a t  i s  va l id  f o r  any redshi f t  
w a s  obtained. In  addition, s imi la r ly  precise  closed-form solutions have been 
obtained f o r  t he  t r a v e l  time of l i g h t  f rom galaxies and the scale  fac tor  of 
the  universe. 

These r e su l t s  are  used t o  obtain a redshift-magnitude r e l a t ion  t h a t  holds 
f o r  a l l  f ini te-densi ty  zero-pressure model universes t h a t  have the  U-property 
except f o r  those with a zero cosmical constant. This expression is  d i f f i c u l t  
t o  use because of t he  many models t h e  solut ion contains and because of t he  s in-  
gu la r i t i e s  t ha t  a r i s e .  However, i f  t he  signs of the cosmical constant and the  
curvature constant a re  known, the  expression becomes very useful  f o r  the  analy- 
sis of observational data .  This form of the redshift-magnitude r e l a t ion  permits 
the  calculat ion of the density parameter f rom apparent magnitude and redshi f t  
data .  Lastly,  a poten t ia l ly  useful  form of the  count-magnitude re la t ion  i s  a l s o  
de rived . 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, V a . ,  June 23, 1965. 
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APPENDIX 

SYMBOLS 

M O  

QO 

(I) 

speed of l i g h t  i n  vacuum 

luminosity distance 

Hubble parameter 

redshi f t  correct ion t o  apparent magnitude 

curvature constant 

absolute magnitude 

evolutionary correct ion t o  absolute magnitude 

r a t e  of change of absolute magnitude f o r  present epoch, 

apparent magnitude 

number of galaxies br ighter  than apparent magnitude m 

number of galaxies per u n i t  volume 

number of square degrees i n  c e l e s t i a l  sphere 

accelerat ion parameter 

sca le  f ac to r  

present value of scale  f ac to r  

function of LU t h a t  depends on curvature of space 

time before present 

present time 

redshi f t  

cosmical constant 

densi ty  parameter 

function of radial metric var iable  

11 
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